Sedra/Smith
Microelectronic Circuits 6/E

Chapter 4-B
Bipolar Junction Transistors (BJTs)
4.5 Small-Signal Operation And Models

\[I_C = I_s e^{V_{BE}/V_T} \]
\[I_B = I_C / \beta \]
\[I_E = I_C / \alpha \]
\[V_C = V_{CE} = V_{CC} - I_C R_C \]
4.5.1 The collector Current and the Transconductance

\[V_{BE} = V_{BE} + V_{be} \]

\[i_C = I_s e^{V_{BE}/V_T} = I_s e^{(V_{BE} + V_{be})/V_T} = I_s e^{(V_{BE}/V_T)} \cdot e^{(V_{be}/V_T)} \]

\[= I_C e^{(V_{be}/V_T)} = I_C \left(1 + \frac{V_{be}}{V_T}\right) = I_C + I_C \frac{V_{be}}{V_T} \]

\[i_c = g_m V_{be} = I_C \frac{V_{be}}{V_T} \Rightarrow g_m = \frac{I_C}{V_T} \quad (4.45) \]
The graph shows a plot of i_C versus v_{BE} with v_{be} and V_{BE} indicated. The slope at point Q is labeled as g_m. The equation given is:

$$g_m = \left. \frac{\partial I_C}{\partial V_{BE}} \right|_{i_c=I_C}$$

(4.46)
4.5.2 The Base Current and the Input Resistance at the Base

\[i_B = \frac{i_C}{\beta} = \frac{I_C + I_C \frac{v_{be}}{V_T}}{\beta} = \frac{I_C}{\beta I_B} + \frac{1}{\beta} \frac{I_C}{i_b} v_{be} \]

\[i_b = \frac{1}{\beta \frac{I_C}{V_T}} v_{be} = \frac{g_m}{\beta} v_{be} \]

\[r_\pi \equiv \frac{v_{be}}{i_b} = \frac{\beta}{g_m} \quad (4.51) \]

\[r_\pi = \frac{\beta}{\frac{I_C}{V_T} = \frac{V_T}{I_B}} \quad (4.52) \]
4.5.3 The Emitter Current and the Input Resistance at the Emitter

\[i_E = \frac{i_C}{\alpha} = \frac{I_C + i_c}{\alpha} = \frac{I_C}{I_E} + \frac{i_c}{i_e} \]

\[i_e = \frac{i_c}{\alpha} = \frac{1}{\alpha} \frac{I_C}{V_T} \nu_{be} = \frac{g_m}{\alpha} \nu_{be} \quad (4.54) \]

\[r_e \equiv \frac{\nu_{be}}{i_e} \Rightarrow r_e = \frac{\alpha}{g_m} \approx \frac{1}{g_m} \quad (4.57) \]

\[\Rightarrow \frac{\alpha}{I_C} = \frac{V_T}{I_E} \quad (4.56) \]
The relationship between r_π and r_e can be found as

$$v_{be} = i_b r_\pi = i_e r_e$$

thus

$$r_\pi = \frac{i_e}{i_b} r_e = (1 + \beta) r_e$$

(4.58)

Figure 4.38 Illustrating the definition of r_π and r_e
4.5.4 Voltage Gain

\[v_C = V_{CC} - i_C R_C \]

\[= V_{CC} -(I_C + i_c) R_C \]

\[= (V_{CC} - I_C R_C) - i_c R_C \]

\[= V_C - i_c R_C \]

\[v_{ce} = -i_c R_C = -g_m v_{be} R_C \]

\[= (-g_m R_C) v_{be} \]

\[A_v \equiv \frac{v_c}{v_{be}} = -g_m R_C = -\frac{I_C}{V_T} R_C \]
4.5.5 Separating the Signal and the DC Quantities

Figure 4.39 The amplifier circuit of Fig. 4.36(a) with the dc sources (V_{BE} and V_{CC}) eliminated (short circuited). Thus only the signal components are present. Note that this is a representation of the signal operation of the BJT and not an actual amplifier circuit.
4.5.6 The Hybrid- Model

\[i_b = \frac{v_{be}}{r_\pi} \]

\[i_c = g_m v_{be} \]

\[i_e = \frac{v_{be}}{r_\pi} + g_m v_{be} \]

\[= \frac{v_{be}}{r_\pi} \left(1 + g_m r_\pi \right) \]

\[= \frac{v_{be}}{r_\pi} \left(1 + \beta \right) = \frac{v_{be}}{r_e} \]

\[g_m v_{be} = g_m \left(i_b r_\pi \right) = \left(g_m r_\pi \right) i_b = \beta i_b \]
4.5.7 The T Model

\[i_b = \frac{v_{be}}{r_e} - g_m v_{be} \]

\[= \frac{v_{be}}{r_e} \left(1 - g_m r_e \right) \]

\[= \frac{v_{be}}{r_e} (1 - \alpha) \]

\[= \frac{v_{be}}{r_e} \left(1 - \frac{\beta}{1 + \beta} \right) \]

\[= \frac{v_{be}}{r_e \left(1 + \beta \right)} = \frac{v_{be}}{r_{\pi}} \]

\[g_m v_{be} = g_m (i_e r_e) = (g_m r_e) i_e = \alpha i_e \]
4.5.9 Application of the Small-Signal Equivalent Circuits

Analysis process:

1. Determine the dc operating point of the BJT and in particular the dc collector current I_C.

2. Calculate the values of the small-signal model parameters: g_m, r_π, r_e.

3. Eliminate the dc sources by replacing each dc voltage source with a short circuit and each dc current source with an open circuit.

4. Replace the BJT with one of its small-signal equivalent circuit models.

5. Analyze the resulting circuit to determine the required quantities.
 (e.g., voltage gain, input/output resistance)
Example 4.14 We wish to analyze the transistor amplifier shown in Fig.4.42(a) to determine its voltage gain. Assume $\beta = 100$.
Determine the dc operating point of the BJT and in particular the dc collector current I_C

Step 1:

we assume $v_i = 0$

$$I_B = \frac{V_{BB} - V_{BE}}{R_{BB}} \approx \frac{3 - 0.7}{100} = 0.023\text{mA}$$

$$I_C = \beta I_B = 100 \times 0.023\text{mA} = 2.3\text{mA}$$

$$V_C = V_{CC} - I_C R_C = 10 - 2.3 \times 3 = 3.1\text{V}$$
Step 2:

Calculate the values of the small-signal model parameters: g_m, r_π, r_e.

$$r_e = \frac{V_T}{I_E} = \frac{25\text{mA}}{2.323\text{mA}} = 10.8\Omega$$

$$g_m = \frac{I_C}{V_T} = \frac{2.3\text{mA}}{25\text{mA}} = 92\text{mA/V}$$

$$r_\pi = \frac{\beta}{g_m} = \frac{100}{92\text{mA/V}} = 1.09\text{k}\Omega$$
Step 3 and 4:
Eliminate the dc sources by replacing each dc voltage source with a short circuit and each dc current source with an open circuit. Replace the BJT with one of its small-signal equivalent circuit models.
step 5:
Analyze the resulting circuit to determine the required quantities.

\[v_{be} = v_i \frac{r_\pi}{r_\pi + R_{BB}} = \frac{1.09}{101.09} v_i = 0.011 v_i \]

\[v_o = -g_m v_{be} R_C = -92 \times 0.011 v_i \times 3 = -3.04 v_i \]

\[A_v = \frac{v_o}{v_i} = -3.04 \] (The "-" sign indicated a phase reversal)
Example 4.15 We wish to consider the waveforms at various point in the circuit analyzed in the example 4.14

If we take the triangular waveform $v_{be(p-p)}$ to be 20mV

$$\hat{V}_i = \frac{\hat{V}_{be}}{0.011} = \frac{10}{0.011} = 0.91V$$

We will use a somewhat lower value for \hat{V}_i of approximately 0.8V
\[\hat{I}_b = \frac{\hat{V}_i}{R_{BB} + r_\pi} = \frac{0.8}{100 + 1.09} = 0.008 \text{mA} \]

\[i_b = \frac{v_{be}}{r_\pi} = (0.8 \times 0.011)/1.09\text{k}\Omega = 0.00081 \text{mA} \]
\[\hat{V}_{be} = \hat{V}_i \frac{r_\pi}{R_{BB} + r_\pi} = 0.8 \frac{1.09}{100 + 1.09} = 8.6 \text{mV} \]
\[\hat{I}_c = \beta \hat{i}_b = 100 \times 0.008 = 0.8\text{mA} \]
\[\hat{V}_c = 3.04 \times 0.8 = 2.43 \text{V} \]
Example 4.16 We need to analyze the circuit of Fig.4.44(a) to determine the voltage gain ($\alpha = 0.99$).
Sol:

\[I_E = \frac{10 - V_E}{R_E} \approx 0.93 \text{mA} \]

\[I_C = 0.99 I_E = 0.92 \text{mA} \]

\[V_C = -10 + I_C R_C = -10 + 0.92 \times 5 = -5.4 \text{V} \]

The transistor is in the active mode.
Figure 4.44 Example 4.16: (c) small-signal model; (d) small-signal analysis performed directly on the circuit.

\[g_m = \frac{I_c}{V_T} = 36.8 \text{mA} \]

\[r_e = \frac{V_T}{I_E} = 27.2 \Omega \]

\[r_{\pi} = \frac{\beta}{g_m} = 2.72k\Omega \]

\[i_e = -\frac{v_i}{r_e}, \quad v_o = -\frac{\alpha R_C}{r_e} v_i \]

\[A_v = \frac{v_o}{v_i} = -\frac{\alpha R_C}{r_e} \]

\[= -\frac{0.99 \times 5k\Omega}{27\Omega} = -183.3V/V \]
Performing Small-Signal Analysis Directly on the Circuit Diagram

\[\frac{v_i}{R_{BB} + r_{\pi}} i_b \]

\[i_C = \beta i_b\]

\[v_o = -R_C i_C = -\beta i_b R_C\]

\[A_v = \frac{v_o}{v_i} = -\frac{\beta R_C}{R_{BB} + r_{\pi}}\]

Figure 4.46 Performing signal analysis directly on the circuit diagram with the BJT small-signal model implicitly employed circuit for example 4.14
4.5.11 Augmenting the Small-Signal Model to Account for the Early Effect

Figure 4.47 The hybrid-\(\pi\) small-signal model, in its two versions, with the resistance \(r_o\) included.
\[v_o = -g_m v_{be} \left(R_C \parallel r_o \right) \]

Thus the gain will be somewhat reduced. Obviously if \(r_o >> R_C \), the reduction in gain will be negligible, and one can ignore the effect of \(r_o \). In general, in such a configuration \(r_o \) can be neglected if it is greater than \(10R_C \).
4.5.12 Summary

Hybrid- Model

T- Model
4.6 Basic BJT Amplifier Configurations

4.6.1 The Three Basic Configurations

(a) Common-Emitter (CE)

(b) Common-Base (CB)

(c) Common-Collector (CC) or Emitter Follower
4.6.2 Characterizing Amplifiers

\[v_i = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} v_{\text{sig}}, \quad v_o = \frac{R_L}{R_o + R_L} A_{v_o} v_i \]
Input resistance: \(R_{\text{in}} \equiv \frac{v_i}{i_i} \)

Open-circuit voltage gain: \(A_{vo} \equiv \left. \frac{v_o}{v_i} \right|_{R_L=\infty} \)

Voltage gain with \(R_L \): \(A_v \equiv \frac{v_o}{v_i} = A_{vo} \frac{R_L}{R_L + R_o} \)

Short-circuit current gain: \(A_{is} \equiv \left. \frac{i_o}{i_i} \right|_{R_L=0} \)

Current gain: \(A_i \equiv \frac{i_o}{i_i} \)
Output resistance: \(R_o \equiv \frac{v_x}{i_x} \bigg|_{v_i=0, R_L=\infty} \)

Overall voltage gain: \(G_v \equiv \frac{v_o}{v_{\text{sig}}} = \frac{v_i}{v_{\text{sig}}} \cdot \frac{v_o}{v_i} = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} A_v \)
4.6.3 The Common-Emitter (CE) Amplifier

Characterizing Parameters of CE Amplifier

\[R_{\text{in}} = r_{\pi} \quad (4.69) \]
\[v_o = -(g_m v_{\pi})(R_C \parallel r_o) \]
\[A_{vo} = -g_m \left(R_C \parallel r_o \right) \approx -g_m R_C \quad (4.71) \]
\[R_o = R_C \parallel r_o \approx R_C \quad (4.73) \]
Concludes:

1. The \(R_{\text{in}} = r_\pi = \beta/g_m = \beta V_T/I_C \) is moderate to low in value (typically, in the kilohm range). Obviously \(R_{\text{in}} \) is directly dependent on \(\beta \) and is inversely proportional to the \(I_C \).

2. The \(R_\circ \approx R_C \) is moderate to high in value (typically, in the kilohm range). Reducing \(R_C \) to lower \(R_\circ \) is usually not a viable proportional because the \(A_v \) is also reduced.

3. The open circuit voltage gain \(A_{v_0} \) can be high, making the CE configuration the work-hourse in BJT amplifier design. However the bandwidth of the CE amplifier is severely limited.
Overall Voltage Gain

\[A_v = \frac{v_o}{v_i} = -g_m \left(R_C \parallel R_L \parallel r_o \right) \quad (4.75) \]

\[v_i = v_{\text{sig}} \frac{r_\pi}{r_\pi + R_{\text{sig}}} \quad (4.74) \]

\[G_v \equiv \frac{v_o}{v_{\text{sig}}} = \frac{v_i}{v_{\text{sig}}} \cdot \frac{v_o}{v_i} = -\frac{r_\pi}{r_\pi + R_{\text{sig}}} g_m \left(R_C \parallel R_L \parallel r_o \right) \quad (4.76) \]

Alternative Gain Expressions

\[A_v = -\alpha \left(\frac{R_C \parallel R_L \parallel r_o}{r_e} \right) = -\alpha \left(\frac{\text{Total resistance in collector}}{\text{Total resistance in emitter}} \right) \quad (4.78) \]

\[G_v = -\frac{g_m r_\pi}{r_\pi + R_{\text{sig}}} \left(R_C \parallel R_L \parallel r_o \right) = -\beta \left(\frac{R_C \parallel R_L \parallel r_o}{r_\pi + R_{\text{sig}}} \right) \]

\[= -\beta \left(\frac{\text{Total resistance in collector}}{\text{Total resistance in base}} \right) \quad (4.80) \]
Performing the Analysis Directly on the Circuit

\[g_m v_\pi = \beta i_b \]

\[v_i = v_\pi \]

\[R_{in} = r_\pi \]

\[v_o = -g_m v_\pi \left(R_C \parallel r_o \right) \]

\[R_o = R_C \parallel r_o \]
Example 4.17 A CE amplifier utilized a BJT with $\beta = 100$ and $V_A = 100\text{V}$, is biased $I_C = 1\text{mA}$ and has a $R_C = 1\text{k}\Omega$. Find $R_{\text{in}}, R_{o}, A_{vo}$. If $R_{\text{sig}} = 5\text{k}\Omega, R_L = 5\text{k}\Omega$, Find G_v, A_v. If \hat{v}_π is to be limited to 5mV, what are the corresponding \hat{v}_{sig} and \hat{v}_o with the load connected?

Sol: At $I_C = 1\text{mA}$

$$g_m = \frac{I_C}{V_T} = \frac{1\text{mA}}{25\text{mV}} = 40\text{mA/V}, \quad r_\pi = \frac{\beta}{g_m} = \frac{100}{40\text{mA/V}} = 2.5\text{k}\Omega$$

$$r_o = \frac{V_A}{I_C} = \frac{100\text{V}}{1\text{mA}} = 100\text{k}\Omega$$

The amplifier characteristic can now be found as

$$R_{\text{in}} = r_\pi = 2.5\text{k}\Omega \, \uparrow$$

$$A_{vo} = -g_m \left(R_C // r_o \right) = -40\text{mA/V} \cdot (5\text{k}\Omega // 100\text{k}\Omega) = -190.5\text{V/V} \, \uparrow$$

$$R_o = R_C // r_o = 5 // 100 = 4.76 \text{ k}\Omega \, \uparrow$$
\[A_v = \frac{V_o}{V_i} = -g_m \left(R_C \parallel R_L \parallel r_o \right) = -40 \left(\frac{5}{5} \parallel 100 \right) = -97.6 \text{V/V} \]

\[G_v = \frac{r_\pi}{r_\pi + R_{\text{sig}}} A_v = -\frac{2.5}{2.5 + 5} \cdot 97.6 \text{V/V} = -32.5 \text{ V/V} \]

If the maximum amplitude of \(v_\pi \) is to be 5mV, the corresponding value of \(\hat{v}_{\text{sig}} \) will be

\[\hat{v}_{\text{sig}} = \left(\frac{R_{\text{in}} + R_{\text{sig}}}{R_{\text{in}}} \right) \hat{v}_{\pi} = \frac{2.5 + 5}{2.5} \times 5 = 15 \text{mV} \]

\[\hat{v}_o = |G_v| \cdot \hat{v}_{\text{sig}} = 32.5 \text{ V/V} \cdot 15 \text{mV} = 0.49 \text{V} \]
4.6.4 The Common-Emitter (CE) Amplifier with an Emitter Resistance
\[i_b = (1 - \alpha) i_e = \frac{i_e}{1 + \beta}, \quad v_i = i_e (r_e + R_e) \]

\[R_{in} = \frac{v_i}{i_b} = (1 + \beta)(r_e + R_e) \tag{4.83} \]

\[\frac{R_{in \text{ (with } R_e \text{ include)}}}{R_{in \text{ (without } R_e \text{)}}} = \frac{(1 + \beta)(r_e + R_e)}{(1 + \beta)r_e} = 1 + \frac{R_e}{r_e} = 1 + g_m R_e \tag{4.84} \]

\[v_o = -i_e R_C = -\alpha i_e R_C = -\alpha \frac{v_i}{r_e + R_e} \Rightarrow A_{vo} = -\alpha \left(\frac{R_C}{R_e + r_e} \right) \tag{4.85} \]

\[A_{vo} = -\alpha \left(\frac{R_C}{R_e + r_e} \right) \frac{v_i}{r_e} = -\alpha \left(\frac{R_C}{r_e \left(1 + \left(\frac{R_e}{r_e} \right) \right)} \right) = -\frac{g_m R_C}{1 + g_m R_e} \tag{4.86} \]

\[R_o = R_C \parallel r_o \approx R_C \]
Overall Voltage Gain

\[
A_v = \frac{v_o}{v_i} = A_{vo} \frac{R_L}{R_L + R_o} = -\alpha \frac{R_C}{r_e + R_e} \frac{R_L}{R_L + R_C} = -\alpha \frac{R_C // R_L}{r_e + R_e} \tag{4.87}
\]

\[
G_v \equiv \frac{v_o}{v_{\text{sig}}} = \frac{v_i}{v_{\text{sig}}} \cdot \frac{v_o}{v_i} = -\frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} \cdot \alpha \frac{R_C // R_L}{r_e + R_e}
\]

\[
= -\frac{(1 + \beta) r_e + R_e}{(1 + \beta)(r_e + R_e) + R_{\text{sig}}} \cdot \frac{\beta}{1 + \beta} \frac{R_C // R_L}{r_e + R_e}
\]

\[
= -\beta \frac{R_C // R_L}{R_{\text{sig}} + (1 + \beta)(r_e + R_e)} \tag{4.88}
\]

\[
\frac{v_\pi}{v_i} = \frac{r_e}{r_e + R_e} = \frac{1}{1 + g_m R_e} \tag{4.89}
\]
Concludes:

1. The input resistance R_{in} is increased by the factor $(1 + g_m R_e)$.
2. The voltage gain from base to collector, A_v is reduced by the factor $(1 + g_m R_e)$.
3. For the same nonlinear distortion, the input signal v_i can be increased by the factor $(1 + g_m R_e)$.
4. The overall voltage gain is less dependent on the value of β.
5. The high frequency response is significantly improved.
Example 4.18 For the CE amplifier specified in Example 4.17, with value of R_e is needed to raise R_{in} to a value four times that of R_{sig}? With R_e included, find A_{vo}, R_o, A_v, and G_v. Also, if \hat{v}_π is limited to 5mV, what are the corresponding values of \hat{v}_{sig} and \hat{v}_o?

Sol:

To obtain $R_{in} = 4R_{sig} = 20k\Omega$

$20k\Omega = (1 + \beta)(r_e + R_e) \Rightarrow r_e + R_e = 20000\Omega/100 = 200\Omega$

$R_e = 200 - 25 = 175\Omega$

$A_{vo} = -\alpha \frac{R_C}{r_e + R_e} = -25. \quad R_o = R_C = 5k\Omega.$

$A_v = A_{vo} \frac{R_L}{R_L + R_o} = -12.5. \quad G_v = \frac{R_{in}}{R_{in} + R_{sig}} A_v = -10 \text{ V/V}.$
For $\hat{v}_\pi = 5\text{mV}$, the corresponding value of \hat{v}_{sig} will be

\[
\hat{v}_i = \left(\frac{r_e + R_e}{r_e} \right) \hat{v}_\pi = 5 \left(1 + \frac{175}{25} \right) = 40\text{mV},
\]

\[
\hat{v}_{\text{sig}} = \left(\frac{R_{\text{in}} + R_{\text{sig}}}{R_{\text{in}}} \right) \hat{v}_i = 40\text{mV} \times \left(1 + \frac{5}{20} \right) = 50\text{mV}
\]

\[
\hat{v}_o = |G_v| \cdot \hat{v}_{\text{sig}} = 10\text{V/V} \cdot 50\text{mV} = 0.5\text{V}
\]
4.6.5 The Common-Base (CB) Amplifier

\[R_{in} = r_e \quad (4.90) \]
\[v_o = -\alpha i_e R_C, \quad v_i = -i_e r_e \]
\[A_{vo} \equiv \frac{v_o}{v_i} = \frac{\alpha}{r_e} R_C = g_m R_C \quad (4.71) \]
\[R_o = R_C \quad (4.73) \]
Overall Voltage Gain

\[
\frac{v_i}{v_{\text{sig}}} = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} = \frac{r_e}{r_e + R_{\text{sig}}}
\]

\[
A_v = \frac{v_o}{v_i} = -g_m \left(\frac{R_C}{r_e + R_{\text{sig}}} \right)
\]

\[
G_v \equiv \frac{v_o}{v_{\text{sig}}} = \frac{v_i}{v_{\text{sig}}} \cdot \frac{v_o}{v_i} = \frac{r_e}{r_e + R_{\text{sig}}} g_m \left(\frac{R_C}{r_e + R_{\text{sig}}} \right)
\]

\[
= \alpha \frac{R_C}{r_e + R_{\text{sig}}}
\]

(4.93, 4.94)
Concludes:

1. The CB amplifier exhibits a very low input resistance \(r_e \).
2. The open-circuit voltage gain that is positive and equal in magnitude to that of the CE amplifier \(\left(g_m R_C\right) \).
3. The short-circuit current gain that is nearly unity \(\left(\alpha\right) \).
4. Like the CE amplifier, has a relatively high output resistance \(\left(R_C\right) \).
5. Has excellent high-frequency performance.

Because of its very low input resistance, the CB amplifier alone is not attractive as a voltage amplifier except in specialized application.
4.6.6 The CC Amplifier or Emitter Follower

The Need for Voltage Buffers

\[R_{\text{sig}} = 100k\Omega \]

\[\nu_{\text{sig}} = 200mV \]

\[R_L = 1k\Omega \]

\[R_{\text{sig}} = 100k\Omega \]

\[\nu_{\text{sig}} = 200mV \]

\[R_{\text{in}} = 100k\Omega \]

\[A_o = 1 \]

\[v_o \approx 99mV \]

\[R_{\text{sig}} = 100k\Omega \]

\[= 2mV \]

\[R_{\text{sig}} = 100k\Omega \]
\[i_b = (1 - \alpha)i_e = i_e/(1 + \beta) \]
\[R_{\text{in}} = \frac{v_i}{i_b} = \frac{i_e (r_e + R_L)}{i_e /(1 + \beta)} = (1 + \beta)(r_e + R_L) \quad (4.95) \]

\[A_v \equiv \frac{v_o}{v_i} = \frac{R_L}{R_L + r_e} \quad (4.96), \quad A_{vo} \equiv \frac{v_o}{v_i} \bigg|_{R_L=\infty} \approx 1 \quad (4.97) \]

\[R_o = r_e \quad (4.98) \]

Overall Voltage Gain

\[\frac{v_i}{v_{\text{sig}}} = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} = \frac{(1 + \beta)(r_e + R_L)}{(1 + \beta)(r_e + R_L) + R_{\text{sig}}} \]

\[G_v \equiv \frac{v_o}{v_{\text{sig}}} \cdot \frac{v_o}{v_i} = \frac{(1 + \beta)(r_e + R_L)}{(1 + \beta)(r_e + R_L) + R_{\text{sig}}} \cdot \frac{R_L}{R_L + r_e} \]

\[= \frac{(1 + \beta)R_L}{(1 + \beta)r_e + (1 + \beta)R_L + R_{\text{sig}}} \approx 1 \quad (4.99) \]
\[G_v = \frac{(1 + \beta)R_L}{(1 + \beta)r_e + (1 + \beta)R_L + R_{sig}} = \frac{R_L}{r_e + R_L + R_{sig}/(1 + \beta)} \]
Conclusions:

1. The CC amplifier exhibits a high input resistance, because of the $(1+\beta)$ multiplication factor.
2. Has a relatively large short-circuit current gain.
3. The open-circuit voltage gain that is smaller than but close to unity.
4. Has a relatively low output resistance.
Thévenin Representation of Emitter-Follower Output

\[\frac{R_{\text{sig}}}{1 + \beta} \]

(a) \[v_o = v_{\text{sig}} \]

\[G_{\text{vo}} = 1 \]

(b) \[R_{\text{out}} = r_e + \frac{R_{\text{sig}}}{1 + \beta} \]

(c) \[R_{\text{in}} = (1 + \beta)(r_e + R_L) \]

(d)
Example 4.19: It is required to design an emitter follower to implement the buffer amplifier of Fig.4.54(c). Specify the required I_E and the transistor β_{min} must have. Determine the \hat{v}_{sig} if v_π is to limited to 5mV in order to obtain reasonably linear operation. with $v_{\text{sig}} = 200\text{mV}$, Determine the signal voltage v_o if $R_L = 2k\Omega$ and to $0.5k\Omega$.

Sol:

From (4.45),

given $R_o = r_e = 10\Omega$

$$r_e = \frac{V_T}{I_E} \Rightarrow I_E = 2.5\text{mA} \quad \square$$

$$R_{\text{in}} = (1 + \beta)(r_e + R_L)$$

$$\Rightarrow 100 = (1 + \beta)(0.01 + 1)$$

$$\beta_{\text{min}} = 98 \quad \square$$
The overall voltage gain can be determined from

\[G_v \equiv \frac{V_o}{V_{\text{sig}}} = \frac{R_L}{r_e + R_L + \left[\frac{R_{\text{sig}}}{(1 + \beta)} \right]} \approx 0.5 \]

Thus when \(V_{\text{sig}} = 200\text{mV} \), the \(V_o = 200\text{mV} \cdot 0.5 = 100\text{mV} \)

\[\Rightarrow V_\pi = \frac{V_o}{R_L} \times r_e = 1\text{mV} \], If \(\hat{V}_\pi = 5\text{mV} \), then \(\hat{V}_{\text{sig}} = 200\text{mV} \times 5 = 1\text{V} \]

Assume \(G_{V_o} = 1 \Rightarrow R_{\text{out}} = r_e + \frac{R_{\text{sig}}}{1 + \beta} = 0.01 + \frac{100}{101} = 1\text{k}\Omega \)

to obtain \(V_o = V_{\text{sig}} \frac{R_L}{R_L + R_{\text{out}}} \)

For \(R_L = 2\text{k}\Omega \) \(\Rightarrow V_o = 200\text{mV} \frac{2\text{k}\Omega}{2\text{k}\Omega + 1\text{k}\Omega} = 133.3\text{mV} \)

For \(R_L = 0.5\text{k}\Omega \) \(\Rightarrow V_o = 200\text{mV} \frac{0.5\text{k}\Omega}{0.5\text{k}\Omega + 1\text{k}\Omega} = 66.7\text{mV} \)
4.8 Discrete-Circuit BJT Amplifier

4.8.2 The common-Emitter (CE) Amplifier
\[v_o = -g_m v_{\pi} \left(r_o // R_C // R_L \right) \]

\[R_{ib} = r_{\pi} \]

\[R_{in} = R_B // r_{\pi} \implies R_{in} \approx r_{\pi} \]

\[R_{out} = \left(r_o // R_C \right) \]
4.8.3 The Common-Emitter (CE) Amplifier with an Emitter Resistance
\[v_o = -\alpha i_e (R_C // R_L) \]

\[R_{out} = R_C // r_o \approx R_C \]

\[R_{ib} = (1 + \beta)(r_e + R_e) \]

\[R_{in} = R_B // R_{ib} \]
4.8.4 The common-Base (CB) Amplifier

\[v_o = -\alpha i_e (R_C \parallel R_L) \]

\[R_{out} = R_C \parallel r_o \approx R_C \]

\[R_{in} = \frac{v_i}{i_i} = r_e \]
4.8.5 The common-Collector (CC) Amplifier or Emitter Follower
\[i_b = (1 - \alpha)i_e = \frac{i_e}{\beta + 1} \]
4.8.6 The Amplifier Frequency Response

(a) Capacitively coupled common-emitter amplifier.
The Three Frequency Bands

Low-frequency band
- Gain falls off due to the effects of C_{C1}, C_{C2}, and C_{E}

Midband
- All capacitances can be neglected

High-frequency band
- Gain falls off due to the effects of C_{π} and C_{μ} of the BJT

$\frac{V_o}{V_{sig}}$ (dB)

f_L, f_H (Hz) (log scale)

$20 \log |A_M|$ (dB)

3 dB
4.9 Transistor Breakdown and Temperature Effects

Figure 4.70 The BJT Common-base characteristic including the breakdown region.
Figure 4.71 The BJT Common-emitter characteristic including the breakdown region.
4.9.2 Dependence of β on I_C and Temperature

Figure 4.72 Typical dependence of β on I_C and on temperature in a modern integrated-circuit npn silicon transistor intended for operation around 1 mA.
Thanks For Your Attention!

Q & A